X2 (Chi-Square)

- one of the most versatile statistics there is
- can be used in completely different situations than "t" and "z"
- X² is a **skewed** distribution

- Unlike z and t, the tails are not symmetrical.
- X² can be used for many different kinds of tests.

We will learn 2 separate kinds of X ² tests.

Matrix Chi-Square Test

(a.k.a. "Independence" Test)

On a calculator this is just called X²-Test.

- Compares two qualitative variables, which are usually organized in a **table** (matrix)
- QUESTION: Does the distribution of one variable change from one value to the other variable to another.

EXAMPLES

- Are the colors of M&Ms different in big bags than in small bags?
- In an election, did different ethnic groups vote differently?
- Do different age groups of people access a website in different ways (desktop, laptop, smartphone, etc.)?

The information is generally arranged in a **contingency table** (matrix).

• If you can arrange your data in a table, a matrix chi-square test will probably work.

For example:

Suppose in a TV class there were students at all 5 ILCC centers, in the following distribution:

Center	Male	Female
Algona E'burg	5	7
E'burg	3	2
E'ville	4	4
Spenc.	4	7
S.L.	3	3

Does the distribution of men and women vary significantly by center?

- Our question essentially is—Is the distribution of the columns different from row to row in the table?
- A significant result will mean things **ARE** different from row to row.
- In this case it would mean the male/female distribution varies a lot from center to center.

The test process is still the same:

- 1. Compute a p-value.
- 2. Compare, and make a decision.

In this problem ...

- Since there's no α given in the problem, let's use $\alpha = .05$
 - 1. Enter the observed matrix as [A] in the MATRIX menu.
 - Press MATRX or 2^{nd} and x^{-1} , depending on which TI-83/84 you have.

- Choose "EDIT" (use arrow keys)
- Choose matrix [A] (just press ENTER)

- Type the number of rows and columns, pressing ENTER after each.
- Enter each number, going across each row, and hitting ENTER after each.

- 2. Press 2nd and MODE to QUIT back to a blank screen.
- 3. Go to \overline{STAT} , then TESTS, and choose X²-Test (easiest with up arrow) (Note on a TI-84 this is "X²-Test", <u>not</u> "X²-GOF Test")

4. Make sure it says [A] and [B] as the observed and expected matrices. If it does just hit ENTER three times.

5. The read-out will give you X^2 and the p-value (which is what you care about).

RESULT

- P = .91289
- This is obviously bigger than .05
- NOT significant

Note, it is fairly common to get **very** large p-values with X²-tests.

Categorical Chi-Square Test

(a.k.a. "Goodness of Fit" Test)

QUESTION:

- Is the distribution of data into various categories different from what is expected?
- Key idea—you have **qualitative** data (characteristics) that can be divided into **more than 2** categories.

EXAMPLES

- Are the colors of M&Ms distributed as the company says?
- Is the racial distribution of a community different than it used to be?
- When you roll dice, are the numbers evenly distributed?

You're comparing what the distribution in different categories **should** be with what it actually is in your sample.

HYPOTHESES:

H₁: The distribution is significantly different from what is expected.

 H_0 : The distribution is not significantly different from what is expected.

SAMPLE PROBLEM:

You want to know if a die is fair.

You roll it 60 times and get 7 1's, 6 2's, 11 3's, 15 4's, 13 5's, and 8 6's.

At the .10 level of significance can you say the die isn't fair?

This test is not built into the TI-83 (though you can download programs to do it). If you have a TI-84, here's what you do ...

Enter the numbers

- Go to STAT → EDIT
- Type the **observed** values in L1.
- Type the <u>expected</u> values in L2.

Enter Observed (L1) Enter Expected (L2)

L1	L2	L3 2			
7 11 15 13 8	10 10 10 10 10				
L2(D=1Ø					

Note that for L2 (expected) you can save time by ...

- If even distribution is expected, take the total divided by the number of categories.
- Otherwise, take each percent times the total.

Hit 2nd / MODE to QUIT back to a blank screen.

Do the test

- Go to STAT → TESTS
- Choose choice "D" (you may want to use the up arrow)... X²GOF-Test

- Make sure Observed says L1 and Expected says L2.
- On the "df" line, enter 1 less than the number of categories.

Enter the lists, df

As with t and z tests, in the read-out, what you mostly care about is the p-value.

Output

RESULT .292 > .10 → NOT SIGNIFICANT

EXAMPLE

You think your friend is cheating at cards, so you keep track of which suit all the cards that are played in a hand are. It turns out to be:

•	♦	\rightarrow	4
•	Y	\rightarrow	2
•	♣	\rightarrow	13
•	٠	\rightarrow	1

You'd normally expect that 25% of all cards would be of each suit. At the .01 level of significance, is this distribution significantly different than should be expected?

<u>Test</u>

<u> </u>	STAT → EDIT					
	L1	L2	L3			
	4	5				
	2	5				
	1 3	5				
	1	5				
	L2(5) =					

 2^{nd} → MODE (QUIT) STAT → TESTS → X^2 GOF-Test

X²GOF-Test Observed:L1 Expected:L2 df:3 Calculate Draw

• P=

RESULT:

- .0004398 < .01
- Significant

If you don't have a TI-84 that will do this test ...

One option is to enter a program that will do it for you.

These directions are available in the printed notes, and writing this program is explained in detail at this YouTube link ... https://www.youtube.com/watch?v=UGEukx2EaEk .

It is also possible to download TI-84 emulators for phones (free) or computers (usually for a fee).

Yet another choice is to go to any of several online X² calculators, such as http://vassarstats.net/csfit.html

Cate- gory	Observed Frequency	Expected Frequency	Expected Proportion		entage viation	Standa Resid				
Α								Sun	ns:	
В										
С								Ohe	erved Freque	ancies
D				-				ODS	erved Freque	encies.
Е				-						
F										
G								Exp	ected Freque	encies:
Н										
								Evn	acted Proper	tions
								Exp	ected Propor	tions.
	Reset	Calculate								
		f=1, the ca corrected f							uncorrected	
		chi-squar	re =							
		(df =		[P is n	on-di	rection	الدم		
			P =		נר וא ו	ion-un	ectioi	iaij		

ONE MORE EXAMPLE:

A teacher wants different types of work to count toward the final grade as follows:

Daily Work
Tests
→ 50%
Project
Class Participation
→ 10%

When points for the term are figured, the actual number of points in each category is:

Daily Work → 175
Tests → 380
Project → 100
Class Participation → 75

TOTAL POINTS = 730

Was the point distribution significantly different than the teacher said it would be? (Use $\alpha = .05$)

This time it's easiest to take each percent times the total for the expected values.

L1	L2	L3
175	.25*730	
380	.5*730	
100	.15*730	
75	.1*730	
	-	
L2(5) :	=	

L1	L2	L3			
175	182.5				
380	365				
100	109.5				
75	73				
L2(5) =					

Since we have 4 categories, there are 3 degrees of freedom.

X²GOF-Test X²=1.803652968 P=.6141403319 df=3 CNTRB={.308219...

RESULT

.614 > .05, so NOT significant.

The division is roughly the same as what it was supposed to be.